DAIMLER

Daimler Truck

Hydrogen and Fuel Cell Heavy-Duty Vehicles - The Next Dimension -

FUSO

Dr. Manfred Schuckert Nov. 10, 2021

BHARATBENZ

Separation of Daimler into two pure-play companies Driving value creation, greater focus and financial discipline

	Today		Tomorrow						
	DAIMLE	ER	Mercedes-Benz	Daimler Truck					
Mercedes- Benz	Daimler Truck	Daimler Mobility							
			Mercedes- Benz Mobility	Financial Services					

Schematic representation

Daimler Truck AG - Ready for independence

On track with transactional and operational separation

Truly independent	Attractive financial profile	Prime listing	
Spin-off of 65% stake	€46bn ¹ revenue business	Frankfurt listing targeted end 2021	
Independent governance	Solid investment grade rating	Dax qualification expected in 2022	
High calibre and diverse supervisory board	Clear financial ambitions		

¹ Actual 2019 - last year without COVID-19 impact

3

Stronger as an independent company

Focused on maximizing our potential

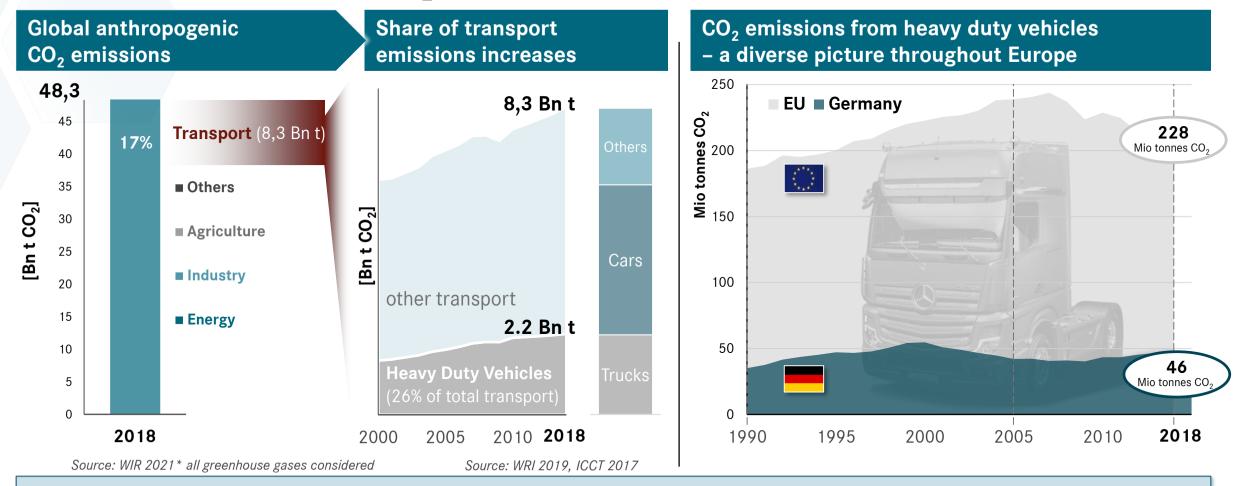
Increased agility and focus leads to faster decision making Execution of truck specific strategic plans

Increased focus on profitability: pivot towards heavy duty and product range streamlining


Targeted investments in truck industry specific innovations

Dedicated partnerships to successfully address shift in technology

Direct access and accountability to the capital markets

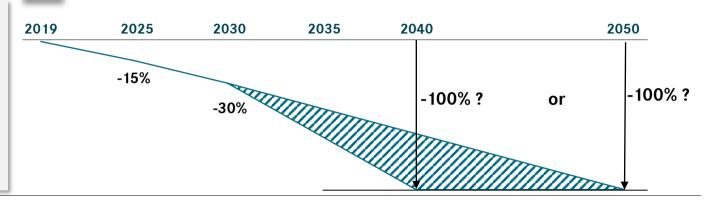


Daimler Truck AG – brands and comparison to other truck manufacturers (only trucks > 6 t GCW) – 2018, 2019 very similar

Relevance of the road transport sector

In the context of overall CO₂ emissions

• Globally, 17% of CO₂ emissions are allocated to the transport sector but share is significantly higher in triad


6

Very stringent targets for HDV CO₂ regulation worldwide for 2025/2030 Already looking towards 2040 (close to zero ?)

Regulatory environment still getting tighter CHINA EU: National reduction actions likely to push for new based on 2019 based on 2014 **7FV** mandate technologies 2019 2025 2030 2019 2021 2025 2030 Class 2b-3 pickup trucks and vans Class 4-8 rigid (i.e. non-tractor) truck • China: Class 7-8 tractor trucks Still with the single vehicle targets -15% -15% Aim: to be on international level by 2025 Fleet -30% (e.g. possibly 1st fleet targets in Stage IV) -30% targets ? Zero Emission Quota for HDV? California: ZEV-mandate decided (ACT) 2027 2030²⁰³¹2032 2029 2025

EU pushing for long-term targets 2035/2040

- 2022 review calls for binding targets for 2035 and 2040
- To reach the "nearly climate neutral" target by 2050
- New initiative by the New EU-COM President (v.d.Leyen): • Green Deal

7

•

Customers have the choice

Whether battery or fuel cell is more suitable for their operation

eActros

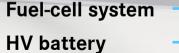
- Mercedes-Benz eActros in customer tests since 2018
- Range: 200 400 km
- Series started in 2021

eActros LongHaul

- Long-distance variant of our distribution transport eActros
- Range of about 500 kilometers
- Series-production ready in 2024

Mercedes-Benz GenH2 Concept Truck

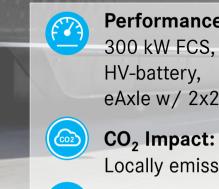
- Next generation of trucks based on fuel cells and hydrogen
- Range: 1,000 km and more
- Series production in the second half of this decade



Lighter load, shorter distance

Heavier load, H₂ longer distance

The Mercedes-Benz GenH2 Truck


Fully dedicated to heavy-duty long-haul transportation

- H₂ storage Voltage level eMotor power
- eMotor torque
- → 400 kW (time limited) 70 kWh \rightarrow 80 kg (LH₂) \rightarrow 800V → 2 x 230 kW (cont.) 2 x 330 kW (peak) 2 x 1,577 Nm (cont.) \rightarrow

2x150 kW

2 x 2,071 Nm (peak)

Performance: 300 kW FCS, HV-battery, eAxle w/ 2x230 kW (cont.)

Locally emission free

Ronea en R2 Talaisy

Heavy-duty long-haul trucks with a range of around 1000km/day

(w/o refueling) and a superior fuel economy require a powerful fuel cell system

Use of H_2 in HDV

Fuel Cell Technology

cellcentric

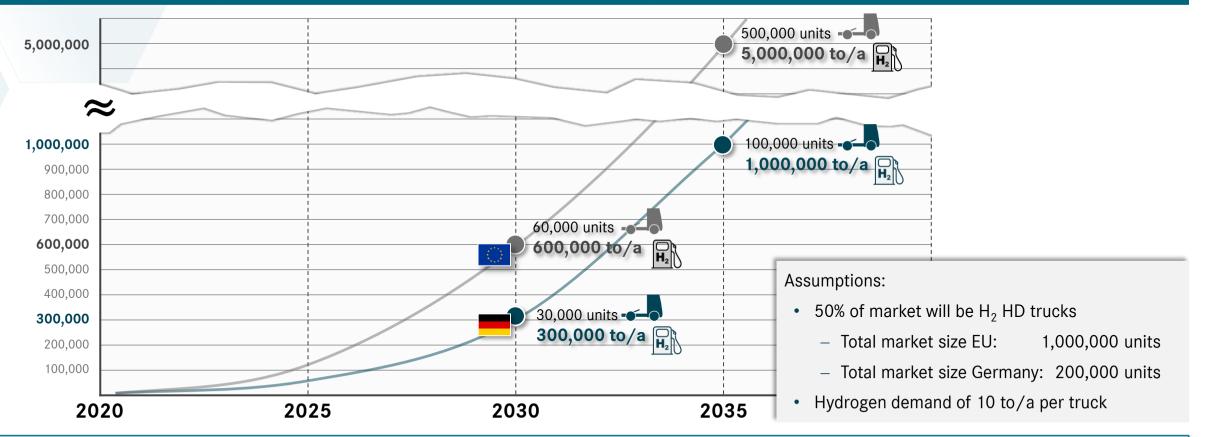
A Daimler Truck & Volvo Group Company

- Fuel Cell power 150kW
- HV voltage range: 650-850V
- Compact packaging
- High lifetime and durability
- High level of efficiency
- Robustness for demanding conditions
- The Cellcentric Fuel Cell System will be designed especially for the needs of the heavy-duty industry
- The heavy-duty truck industry is large enough to provide economies of scale

National Hydrogen Council (NWR) – H2-Consumption of Trucks Quantity structure applied* for RED II-position 2030

11

				Energy	y total				TI	HG Value		CO, total		THG quota equivaler	
Final energy demand road (w/ efficiency improv	/ement. but no transitio	n to ZE)		1.900 PJ	528 TWh							2			
Final Energy Demand w/o ZEV (Diesel, Petrol, N		- /		1.498 PJ	416 TWh					94 g CO2/MJ		109 Mio t CO2			
Final energy demand ZEV w/o factor				161 <i>PJ</i>	45 TWh										
Final energy demand ZEV with factor				322 PJ	89 TWh										
Final energy demand road (real)				1.659 PJ	461 TWh										
Final energy demand road (reference value calc	ulated according BlmSc	chV)		1.820 PJ	505 TWh					94 g CO2/MJ		132 Mio t CO2			
	Fleet population	Energy Consumption	Mileage	Energy	y total	Utlilization		Multiplier	т				CO ₂ saving real		
ZEV								~	~~~	•	C 2				
BEV PV	7.000.000	20 kWh	14.000		estima	te for (Germa	ny, 2	030	:	· · ·	NATIONALER 22	3,0 Mio t CO2	4,5%	
PHEV PV	3.000.000	20 kWh	7.000		estime					- 1-0	WASS	ERSTOFFRAT 02	0,6 Mio t CO2	1,0%	
BEV HDV >3.5t GVW	80.000	130 kWh	60.000		appr. 30	000 H	l, heav	∕y-du	ty ti	rucks)2	1,1	1,6%	
BEV Buses >3.5t GVW	12.000	110 kWh	60.000	• 6	appi. 50	,000.	·Z ···	10 +/	$\frac{1}{2}$	hydroge	n	12	0,1	0,2%	
BEV LDV < 3.5t GVW	350.000	22 kWh	20.000	F	 appr. 30,000 H₂ neavy duty and a second sec										
H ₂ PV	250.000	1 kg	15.000				- 			200 0	00 to l	2	0,3	0,4%	
H ₂ HDV > 16t GVW	30.000	8 kg	120.000	• •	Resultin	g in an i	nual de	emar		300,0		-2 502	2,4	3,6%	
H ₂ Buses >18t GVW	4.000	8 kg	75.000				ort					10 t CO2	0,2	0,3%	
H ₂ LDV < 3.5t GVW	50.000	2 kg	20.000		for truck	(transp	JUL					3 Mio t CO2	0,2	0,3%	
Refineries															
	Electrolyser perf. [GW]	H ₂ in total		H ₂ (for road	fuels only)		Max. allow	ved share							
H ₂ gros demand		450.000 t		32,4 <i>PJ</i>	9,0 TWh										
H ₂ net demand	0,9	171.000 t		12,3 <i>PJ</i>	3,4 TWh	100%		2		9,4 g CO2/MJ	90%	1,6 Mio t CO2	0,8 Mio t CO2	1,2%	
upstream emission reductions						90%	1,20%					1,4	1,4	1,1%	
Biofuels and efuels															
				Energy	y total		Min share	/ targets				CO ₂ saving	CO ₂ saving real		
Advanced biofuels, Annex IX Teil A				1041											
/lin.		0,7	' Mio toe	29,0 <i>PJ</i>	8,1 TWh	100%	1,75%	1	18,8	g CO2/MJ	80%	1,7 Mio t CO2	1,7 Mio t CO2	1,3%	
/lax.(only delta to min)*		0,7	' Mio toe	29,0 <i>PJ</i>	8,1 TWh	100%	1,75%	2	18,8	g CO2/MJ	80%	3,4 Mio t CO2	1,7	2,6%	
Reststoffbasierte Kraftstoffe, Annex IX Teil B		0,8	Mio toe	31,5 <i>PJ</i>	8,8 TWh	100%	1,90%	1	9,4	g CO2/MJ	90%	2,1 Mio t CO2	2,1	1,6%	
Conventional biofuels		1,1	Mio toe	44,8 PJ	12,4 TWh	100%	2,70%	1	28,2	g CO2/MJ	70%	2,3 Mio t CO2	2,3	1,7%	
fuels		0,4	Mio toe	18,1 <i>PJ</i>	5,0 TWh	100%	1,09%	2	9,4	g CO2/MJ	90%	2,4 Mio t CO2	1,2	1,8%	
					1										
H ₂ +efuels														7,6%	


Daimler Truck AG

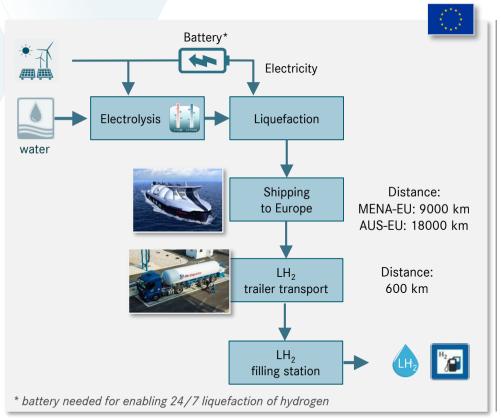
* applied sources of NWR: NPM AG1, different studies of MKS as well as BDI etc.

Supply and demand have to be synchronised

Ramp-up of (green) H₂ supply has to keep pace

Strongly increasing H₂ demand from 2030: More than 10 Mio. to H₂ needed for HD trucks from 2035 on

• Starting around 2025, dynamic uptake of hydrogen by the heavy duty industry


LH₂ supply & demand:

Could green H₂ from Middle-East still reach European trucks?

H_2 could become energy carrier of the future especially in the HDV sector International liquefaction chain could solve the concern on green hydrogen

Supply chain

International H₂ production and shipping

Stay Tuned – More to come up

Daimler Truck AG Dr. Manfred Schuckert Head of Regulatory Strategy and International Hydrogen Strategy manfred.schuckert@daimler.com HPC DTF41 70771 Leinfelden-Echterdingen Germany