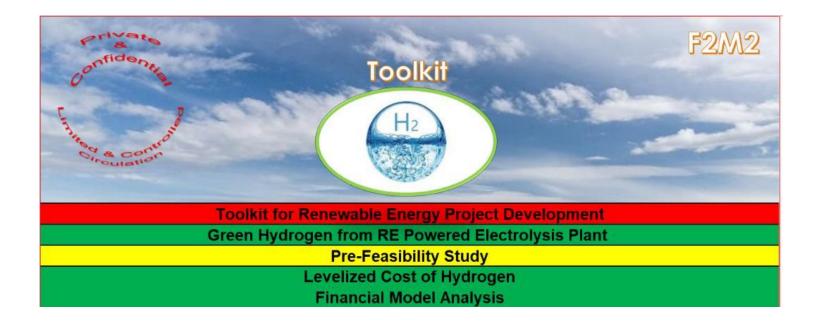
Dii Desert Energy

Green Hydrogen: The Rise of Green Molecules! Innovative Financial Model Toolkit for Analyzing Levelized Costs (LCOH & LCOA)

Fadi Maalouf Dubai 10th Nov 2021

DI

Document History


DOCUMENT CHANGE HISTORY RECORD SHEET

Document Title / Number	Rev.	Description Of Change	Effective Date	
Green Hydrogen Financial Model Toolkit	1	Initial Release – For Information	22-Jul-2020	
Hydrogen-Financial-Model-Toolkit-R1-fm200722	•			
Green Hydrogen Financial Model Toolkit	2	Updated for Toolkit Model V4 – For Information	22-Sep-2020	
Hydrogen-Financial-Model-Toolkit-R2-fm200922	2			
Green Hydrogen Financial Model Toolkit	3	Updated for Toolkit Model V5 – For Information	12-Jan-2021	
Green-Hydrogen-Financial-Model-Toolkit-R3-fm210112	5			
Green Hydrogen Financial Model Toolkit	4	Updated for Toolkit Model V6 & V7 – For Information	9-Feb-2021	
Green-Hydrogen-Financial-Model-Toolkit-R4-fm210209	4			
Green Hydrogen Financial Model Toolkit	5	Updated Business Cases – For Information	10-Nov-2021	
Green-Hydrogen-Financial-Model-Toolkit-R5-fm211110	5		10 100-2021	

Category	Name	Designation	Signature	Date
Author	Fadi Maalouf	CTO - Director IPP & EPC	F2M2	10-Nov-2021

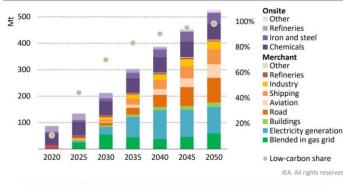
Outline

- Introduction
- Background & Context
- Toolkit Versions
- Toolkit Features
- How Does It Work?
- Toolkit Content
- Toolkit Inputs Form
- Toolkit Direct Outputs
- Toolkit Analytical Outputs
- Grey vs. Green Ammonia
- Takeaways
- Contact

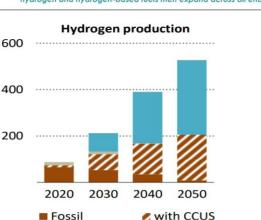
Introduction

- In the Global Energy Transition context and decarbonization, all hands must be on deck!
- There is no magic quick fix or silver bullet solution. It is a collaborative effort across all stakeholders and industries.
- A double win can be achieved: accelerated energy transition driven by sustainable economic recovery.
- An important element of this double win is Green Hydrogen, i.e. hydrogen produced from electrolyzers powered by renewable energy resources.
- Hydrogen is a versatile energy carrier with a wide range of uses and unique attributes, especially for energy sectors that are hard to electrify with renewable resources but can be made greener through sector coupling.
- So, if Green Hydrogen is technically a key enabler of decarbonization, then the next step or barrier to break is economics.
- This translates to: how much does Green Hydrogen costs to produce and how to calculate that as well as analyze pathways of cost reduction?
- A financial model toolkit for analyzing levelized cost of Hydrogen becomes necessary.

Background & Context: Why Hydrogen ? Net Zero by 2050 – IEA Scenario - Role of Hydrogen & Its Derivatives

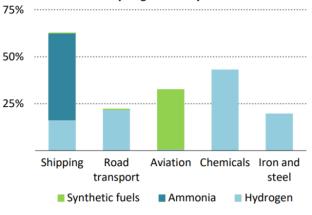

Hydrogen Demand

- H_2 & its derivative should meet 13% of final energy use in 2050
- 2020 demand is around 90 Mt per annum
- 2050 demand forecast is around 528 Mt per annum
- Majority of Future demand is heavy transport, H₂ derivative fuel for shipping & aviation, & flexible power generation
- H_2 and NH_3 could meet 60% of energy demand in shipping
- Synthetic fuels could meet third of energy demand in aviation


Hydrogen Supply

- Decarbonizing fossil based H₂ is vital
- Low carbon based H₂ supply will increase from today till 2050
- Electricity based H₂ represents 62% of supply by 2050
- Electrolysis capacity should reach 850 GW by 2030
- Electrolysis capacity should reach 3000 GW by 2045
- Scaling up & innovation are critical for electrolysis cost reduction

Figure 2.19 > Global hydrogen and hydrogen-based fuel use in the NZE



The initial focus for hydrogen is to convert existing uses to low-carbon hydrogen; hydrogen and hydrogen-based fuels then expand across all end-uses

¥

Share of hydrogen fuels by sector in 2050

IEA. All rights reserved.

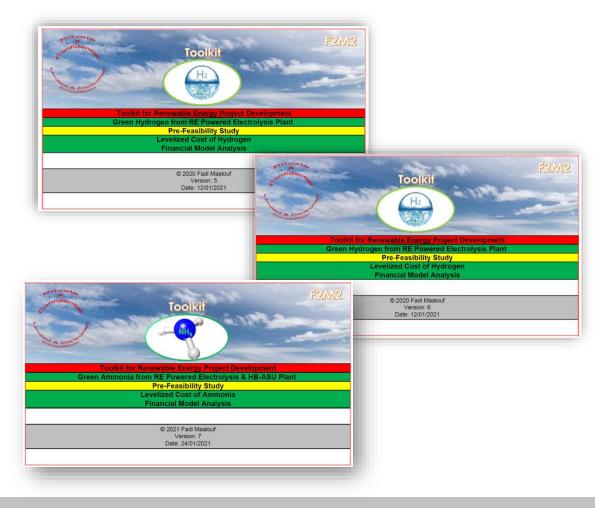
Table 2.7 > Key deployment milestones for hydrogen and hydrogen-based fuels

Sector	2020	2030	2050
Total production hydrogen-based fuels (Mt)	87	212	528
Low-carbon hydrogen production	9	150	520
share of fossil-based with CCUS	95%	46%	38%
share of electrolysis-based	5%	54%	62%
Merchant production	15	127	414
Onsite production	73	85	114
Total consumption hydrogen-based fuels (Mt)	87	212	528
Electricity	0	52	102
of which hydrogen	0	43	88
of which ammonia	0	8	13
Refineries	36	25	8
Buildings and agriculture	0	17	23
Transport	0	25	207
of which hydrogen	0	11	106
of which ammonia	0	5	56
of which synthetic fuels	0	8	44
Industry	51	93	187

Note: Hydrogen-based fuels are reported in million tonnes of hydrogen required to produce them.

Refining CNR Electricity

Toolkits Versions


Levelized Cost of Green Hydrogen LCOH & Green Ammonia LCOA

Three Versions:

- LCOH Financial Model Toolkit V5 Green H₂ Production
- LCOH Financial Model Toolkit V6 Green H₂ Production & Delivery Infra Pathways
- LCOA Financial Model Toolkit V7 Green NH₃ Production & Storage

Three versions Modular approach to:

- Verify costs at each stage of the process
- Identify cost optimization priorities & opportunities

Toolkits Feautures Levelized Cost of Green Hydrogen LCOH & Green Ammonia LCOA

Features:

- Get exclusive market analysis and benchmarking data about the Levelized Cost of Green Hydrogen and Green Ammonia.
- Obtain the best of all worlds assembled from over 50 best in class models for LCOH/LCOA in the market.
- A quick yet very effective holistic approach methodology to determine levelized costs of green molecules.
- Capture all life cycle costs and assess project feasibility.
- A detailed analytical dive into optimizing costs as well as performance parameters.
- Utilize powerful and comprehensive sensitivity analysis scenarios.
- User-friendly design with guideline, rich visuals & charts, printable 16-page report.
- A free Software as a Service (SaaS) basis for Dii network members and partners.
- Native model toolkits files (xls) are available as commercial product.
- Download sample pdf reports at: <u>www.dii-desertenergy.org</u>

Toolkits Features

Levelized Cost of Green Hydrogen LCOH & Green Ammonia LCOA

Financial Model Toolkit Features: Zoom In!

- Very Well-Structured Content & Workflow
- Project Information Data Capturing Full Scope of Work & Limits
- Detailed Input Parameters Form with Guideline Notes
- Tabular LCOH/LCOA Outputs
- Breakdown CAPEX & LCOH/LCOA Output Charts
- Up to 16 Parameters Sensitivity Tornado Chart
- Up to 8 Two-Dimensional Sensitivity Charts
- Multi-Lifecycle Analysis Chart
- Export Data/Charts Feature
- GIS Interface Feature

Sample Case Studies Forecast for GWe Scale Plants LCOH/LCOA in 2025

- Morocco Green Hydrogen (PV+Wind) LCOH: < \$1.6//Kg H₂
- Oman Green Ammonia (PV+Wind) LCOA: < \$475/ tNH₃
- UAE Green Hydrogen (PV) LCOH: < \$2.1//Kg H₂
- KSA Green Ammonia (PV+Wind) LCOA: < \$450/ tNH₃

How Does It Work? V5

- The financial model toolkit is a discounted cashflow model coupled with visual representation in charts and graphs, and analytical features of one- and two-dimensional sensitivity analysis.
- Basically, the toolkit is a calculation engine that feeds on user supplied input parameters and provides calculated outputs of LCOH in \$/Kg H₂ plus plenty of charts for easier analytical what-If-scenarios representation.
- To run the model and provide a report, the user (desktop researcher) provides Dii with the required "input parameters".
- This is a two-page Inputs Form that covers the attributes of Green Hydrogen/Ammonia. Dii runs the model and provides a report. Service Done!

- The financial model toolkit is an XLS file with 11 sheets.
- The integrity of the toolkit structure and calculation engine is secured and protected against unintended formulae edits.
- A content sheet provides quick navigation hyperlinks to all sheets.
- By providing a list of input parameters, a model run will generate a 14-page pdf report.

CONTENT

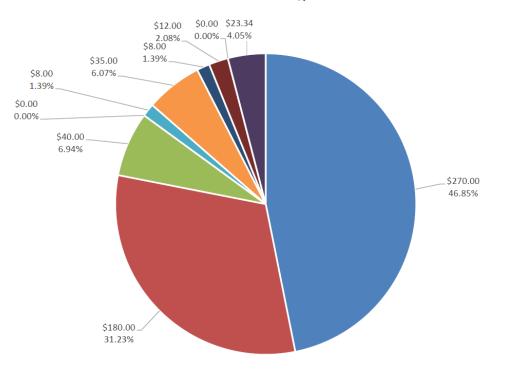
S.N. 🖵	Description	Link 🗾
1	Cover	Cover
2	Content	<u>Content</u>
3	Disclaimer	<u>Disclaimer</u>
4	Project Info Summary	Project-Info-Summary
5	Inputs Form Guide	Inputs-Form-Guide
6	Summary Inputs Outputs	Summary-Inputs-Outputs
7	Cashflow	Cashflow
8	Sensitivity 1D 2D	Sensitivity-1D-2D
9	Export 2D Hi Res Table	Export-2D-HiRes
10	Export Charts	Export-Charts
11	Contact	Contact

Toolkit Inputs Form V5

- The Inputs Form (xls file) data set is in six categories:
 - General (Lifecycle up to 40 years, economies of scale, technology & costs ref. years)
 - 2. Finance Structure (gearing, equity & debt rates)
 - 3. CAPEX (breakdown required)
 - OPEX (fixed & variable, energy & water, land lease, escalation rates, stack replacement intervals)
 - 5. System (capacity, efficiency, degradation, capacity factor)
 - 6. Decommissioning & Residual Value
- For each input parameter, a few notes and remarks are provided. The user can also add his/her special notes as well. It is worth noting that quality and validity of input data is key.

Inputs Form

1


Toolkit Direct Outputs V5

- The toolkit direct outputs are in three categories:
 - 1. Direct calculation outputs, LCOH baseline case
 - 2. CAPEX breakdown with chart
 - 3. LCOH breakdown chart

COH Component	Component \$/Kg H ₂	Component Percentage
Capex Component	0.296333	20.26%
Opex Component - Energy Cost	0.961560	65.73%
Dpex Component - General Fixed O&M	0.102475	7.00%
Opex Component - Water Cost	0.030000	2.05%
Opex Component - Stack Replacement Cost	0.070913	4.85%
Opex Component - Leased Land Cost	0.001663	0.11%
Opex Component - Decom. & Res. Cost	0.000000	0.00%
		Total Percentage Check
		100.00%
LCOH (\$/Kg H ₂)	\$1.462943	
LCOH (AED/Kg H ₂)	5.376314	
Model Integrity OK? (True/False)	TRUE	


Toolkit Direct Outputs V5

CAPEX Breakdown \$/kWe DC

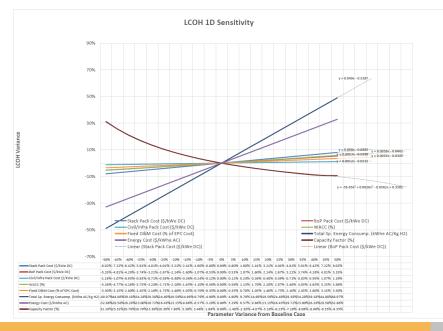
- Electrolyzer Stack Package Cost (\$/kWe DC)
- Overall Civil & Infrastructure Package Cost (\$/kWe DC)
- Plant Start-up Package Cost (\$/kWe DC)
- Project Developer Contingencies Allocation Cost (\$/kWe DC)
- Taxes GST/VAT (\$/kWe DC)

- Electrical & Mechanical BoP Packages Cost (\$/kWe DC)
- HV Substation Package Cost (\$/kWe DC)
- EPCM Service Package Cost (\$/kWe DC)
- Project Development Cost (\$/kWe DC)
- Finance Cost During Construction (\$/kWe DC)

LCOH Breakdown \$/Kg H₂

Dii Toolkit for RE Grid Integration, Project Development & Industry Localization

Opex Component - General Fixed O&M


Opex Component - Decom. & Res. Cost

Opex Component - Stack Replacement Cost

Opex Component - Water Cost

Opex Component - Leased Land Cost

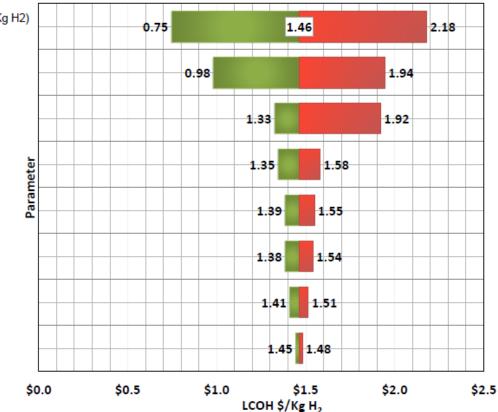
- Analytical what-if scenarios one-dimensional LCOH calculation outputs
 - Eight input parameters variances +/- 50%
 - Tornado chart

Tornado Chart - LCOH \$/Kg H₂

Total Sp. Energy Consump. (kWhe AC/Kg H2) (-50%, 0%, 50%)

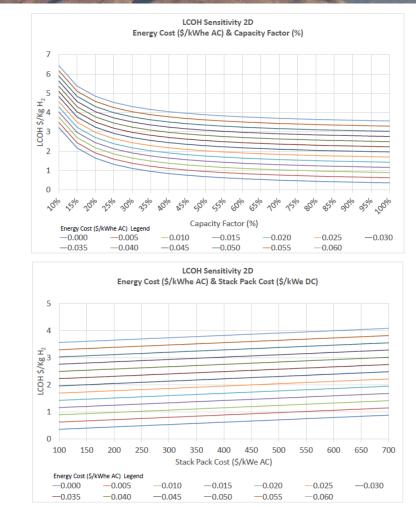
Energy Cost (\$/kWhe AC) (-50%, 0%, 50%)

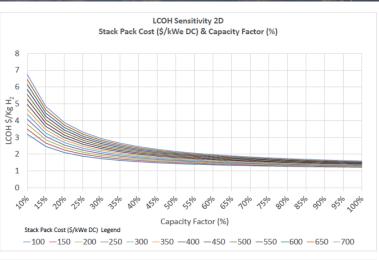
Capacity Factor (%) (50%, 0%, -50%)

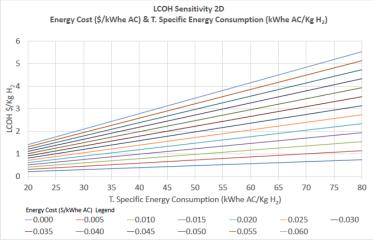

Stack Pack Cost (\$/kWe DC) (-50%, 0%, 50%)

WACC (%) (-50%, 0%, 50%)

BoP Pack Cost (\$/kWe DC) (-50%, 0%, 50%)

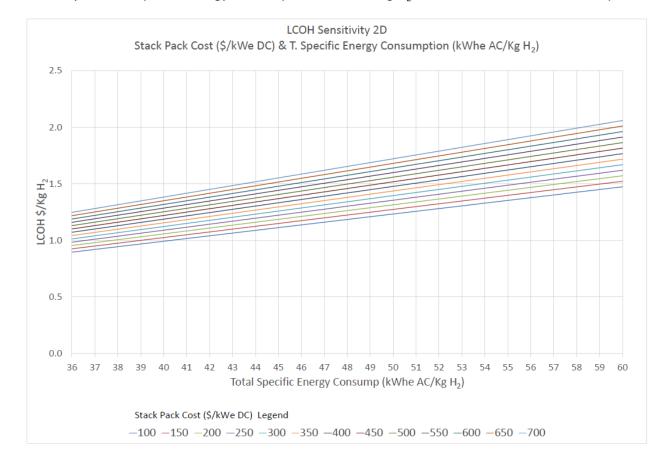

Fixed O&M Cost (% of EPC Cost) (-50%, 0%, 50%)


Civil/Infra Pack Cost (\$/kWe DC) (-50%, 0%, 50%)



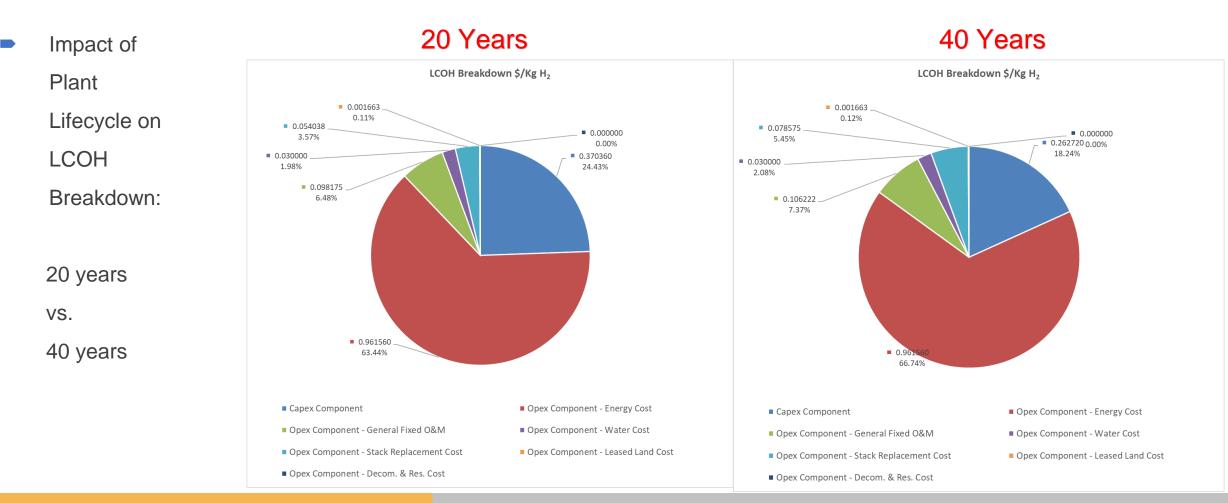
Dii Toolkit for RE Grid Integration, Project Development & Industry Localization

 Analytical what-if scenarios two-dimensional LCOH calculation outputs



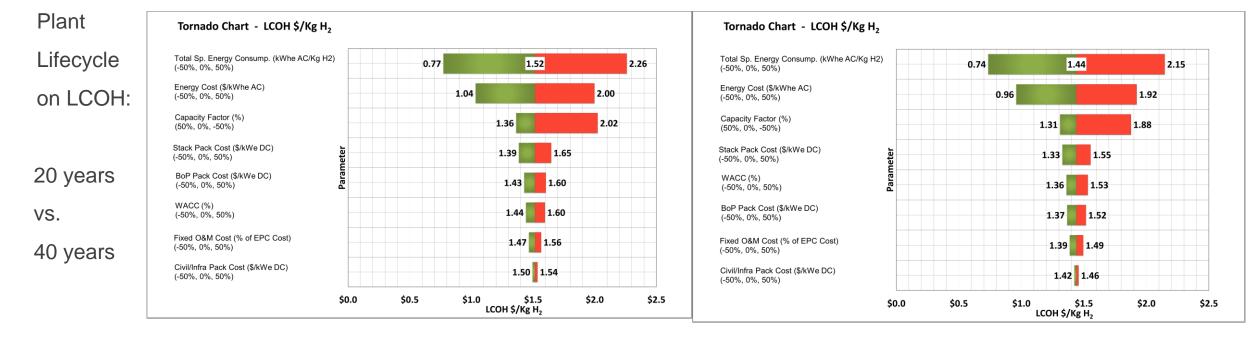
Dii Toolkit for RE Grid Integration, Project Development & Industry Localization


 Analytical what-if scenarios two-dimensional LCOH calculation outputs for Electrolyzer Development Roadmap (Eff. vs. Cost) Electrolyzer Development Roadmap Analysis


LCOH 2D Sensitivity for Efficiency and Cost Electrolyzer Total Specific Energy Consumption kWhe AC/Kg H₂ & Stack Pack Cost \$/kWe DC Impact on LCOH

Impact of Plant Lifecycle on LCOH:
 20 years vs. 30 years vs. 40 years

LCOH Plant Lifecycle Sensitivity Analysis


Dii Toolkit for RE Grid Integration, Project Development & Industry Localization

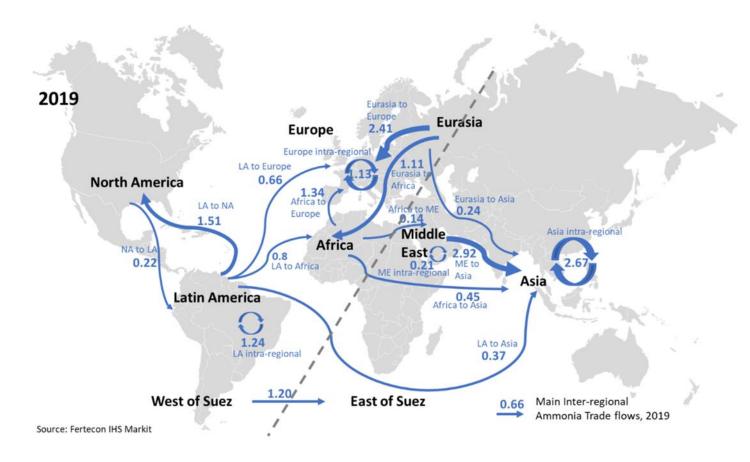
/5

Impact of

20 Years

40 Years

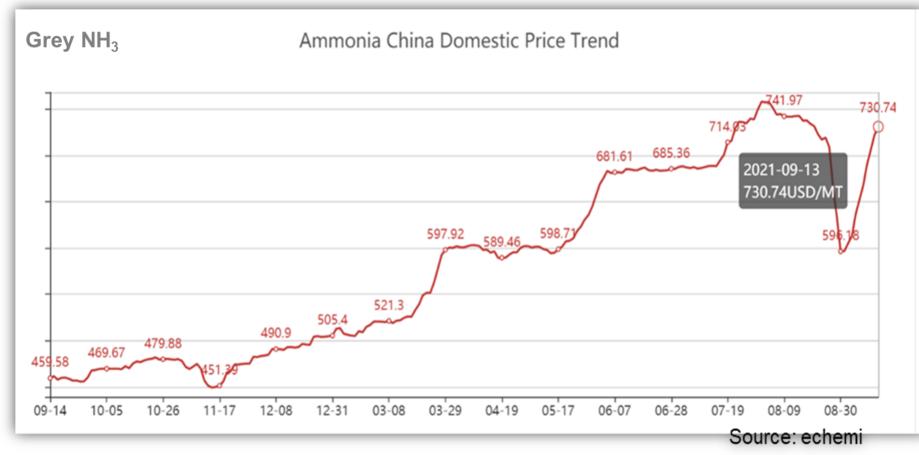
Green Ammonia Levelized Cost:


Is a Competitive Alternative to Volatile Grey Ammonia Markets?

Ammonia is a globally traded commodity

- Grey ammonia global historical prices review
- Green ammonia LCOA case study 2025

Grey Ammonia Global Trade Flow 2019



Map of global ammonia trade flows. Source Fertecon IHS Markit.

Grey Ammonia Price in China

One Year Period: Sep-2020 to Sep 2021

Price Range: \$450 to \$740/ton

Grey Ammonia FOB Price in Middle East, Caribbean, Black See

20 Years Period: Sep-2001 to Feb-2020

Price Range: \$100 to \$850/ton

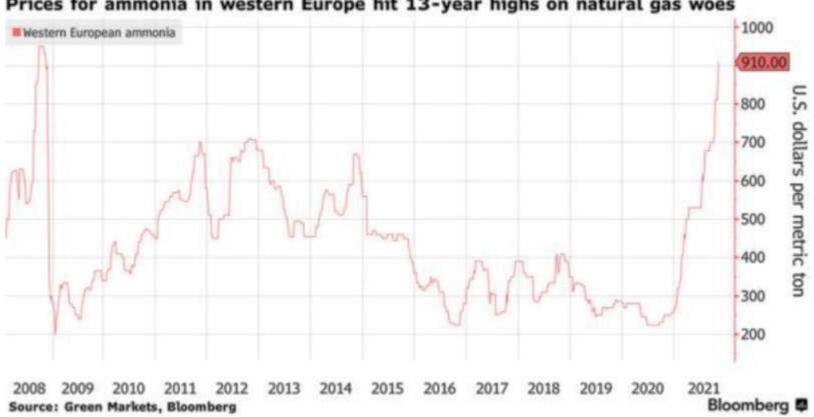
Ammonia price development. (Source: CRU - Fertilizer week)

Actual and Predicted Anhydrous Ammonia Prices Grey Ammonia Price in USA fdd 56 Years Period: 900 900 1960 to 2016 800 **Grey NH**₃ 800 Ammonia) Ammonia) 700 700 Price Range: \$100 to \$850/ton 600 600 per ton (Anhydrous ton (Anhydrous 500 500 400 400 **Actual Price** 300 300 per Estimated Price 200 200 -100 100 0 0 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 Year

Grey Ammonia Price in USA

31 Years Period: 1990 to Oct 2021

Price Peak Oct-2021: \$1030/ton



Dii Toolkit for RE Grid Integration, Project Development & Industry Localization

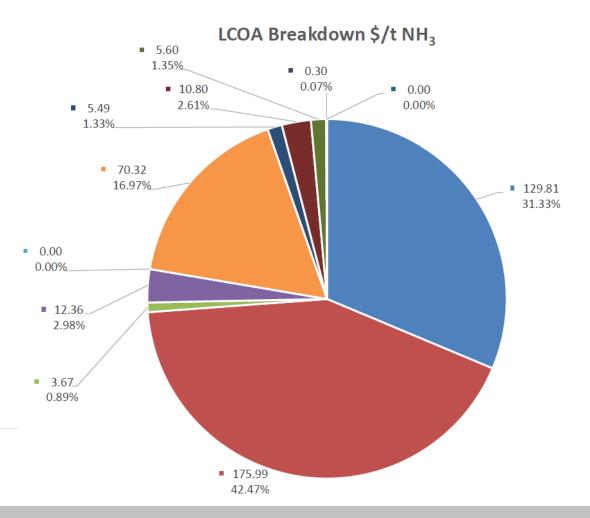
Grey Ammonia Price in Western Europe

13 Years Period: 2008 to Nov-2021

Price Peak Nov-2021: \$910/ton

Prices for ammonia in western Europe hit 13-year highs on natural gas woes

- Green Ammonia Offers fixed price contract for 30 years
- Business Case Key Assumptions Under Favorable & Optimum Conditions (e.g., Morocco, Chile, Oman)
 - Technology: Water Electrolysis with Haber Bosch Synthesis & ASU
 - Plant Size & Capacity Factor: 1 GWe DC, 70% PV+Wind
 - CAPEX & OPEX: \$1.39 Billion & 3.11% p.a
 - Energy Weighted Average Cost : \$18/MWh
 - RE Powered RO Water Feedstock Cost: \$3/m^{3,}, WACC: 4.56%
 - MMRA: cashflow funded for 10-yr stack replacement cycle (degradation calcs % per khr is considered)
 - Plant Lifecycle: 30 years
 - Business Case Estimated LCOA for 2025: \$414/ton
 - 2025 estimated Green Ammonia Levelized Cost 375-450 \$/ton under favorable & optimum conditions


Typical Green Ammonia LCOA Breakdown: Business Case 2025 Under Favorable Conditions @ \$414/ton

Toolkit V7

OUTPUTS - 30 Years			
LCOA Component	Component \$/t NH ₃	Component Percentage	
Capex Component	129.81	31.33%	
Opex Component - Electrolysis Energy Cost	175.99	42.47%	
Opex Component - H ₂ Pre-Compression Energy Cost	3.67	0.89%	
Opex Component - NH₃ Synthesis Energy Cost	12.36	2.98%	
Opex Component - Other infra Energy Cost	0.00	0.00%	
Opex Component - General Fixed O&M	70.32	16.97%	
Opex Component - Water Cost	5.49	1.33%	
Opex Component - Stack Replacement Cost	10.80	2.61%	
Opex Component - HB-ASU Major Overhaul Cost	5.60	1.35%	
Opex Component - Leased Land Cost	0.30	0.07%	
Opex Component - Decom. & Res. Cost	0.00	0.00%	
		Total Percentage Check	
		100.00%	
LCOA (\$/t NH ₃)	414.35		
LCOA (AED/t NH ₃)	1,522.74		

Typical Green Ammonia LCOA Breakdown: Business Case 2025 Under Favorable Conditions @ \$414/ton Toolkit V7

- Capex Component
- Opex Component H2 Pre-Compression Energy Cost
- Opex Component Other infra Energy Cost
- Opex Component Water Cost
- Opex Component HB-ASU Major Overhaul Cost
- Opex Component Decom. & Res. Cost

- Opex Component Electrolysis Energy Cost
- Opex Component NH3 Synthesis Energy Cost
 - Opex Component General Fixed O&M
- Opex Component Stack Replacement Cost
- Opex Component Leased Land Cost

Green Ammonia LCOA Sensitivity Analysis 2025 Business Case Significant Room for Improvement by 2050 Toolkit V7

LCOA Key Improvement Drivers:

- Cumulative learning rates across the board
- Maintaining high annual capacity factors
- Electrolyzer efficiency increase
- Renewable energy cost decrease
- CAPEX cost decrease
- By 2050, Green Ammonia LCOA could fall to as low as \$300/ton

Total Sp. Energy Consump. (kWhe AC/Kg H2) 236.55 414.35 592.15 (-50%, 0%, 50%)Capacity Factor (%) 351.44 624.26 (50%, 0%, -50%) Energy Cost (\$/kWhe AC) 318.34 510.36 (-50%, 0%, 50%) NH3 HB-ASU Pack Cost (\$/kWe DC) arameter 376.06 452.64 (-50%, 0%, 50%)Fixed O&M Cost (% of EPC Cost) 379.19 449.51 (-50%, 0%, 50%)WACC (%) 382.28 450.55 (-50%, 0%, 50%)Stack Pack Cost (\$/kWe DC) 387.73 440.97 (-50%, 0%, 50%)BoP Pack Cost (\$/kWe DC) 400.47 428.24 (-50%, 0%, 50%)\$0 \$600 \$200 \$400 \$800 LCOA \$/t NH₂

Tornado Chart - LCOA \$/t NH3

- The green molecules era has arrived.
- Their contribution to the energy transition will rise and accelerate.
- Balancing the technical solutions with sound economics will be critical to the success.
- Clear long-term standards / policy / regulatory environments w/ risk-balanced offtake agreements are vital for bankable

projects development.

Again, all hands must be on deck!

Thank You For Your Attention!

Contact:

Fadi Maalouf CTO - Director IPP & EPC +971 50 624 6126 fadi@dii-desertenergy.org www.dii-desertenergy.org

